An NMR spectrum ($C_{6} D_{6}$) of the orange residue only exhibited resonances for the corresponding m - and p-tolyl bromide complexes. The ratio of the integrated intensities of the tolyl methyl resonances (meta, $\delta 2.309,69 \%$; para, $\delta 2.279,31 \%$) was within the experimental limit of error of the ratio of the starting materials (67:33).

Preparation of α, α, α-Trideuterio-2-bromo- p-xylene. The compound was prepared in 4 steps from methyl p-toluate and used for the preparation of $8 \mathbf{a}$ as previously described. ${ }^{16}$ Monobromination of methyl p toluate (3.5 g) with $\mathrm{AlCl}_{3} / \mathrm{Br}_{2}{ }^{34}$ gave methyl 3 -bromotoluate (2.45 g , 46%) as a colorless liquid after Kugelrohr distillation ($140^{\circ} \mathrm{C}(10 \mathrm{~mm}$)). Reduction of the ester (1.29 g) with lithium aluminum deuteride using standard procedures ${ }^{35}$ afforded 2 -methyl-5-hydroxymethyl- d_{2}-bromobenzene in 84% yield $(0.96 \mathrm{~g})$ after Kugelrohr distillation $\left(110^{\circ} \mathrm{C}(10)\right.$ $\mathrm{mm})$). Treatment of the deuterated alcohol $(0.80 \mathrm{~g})$ with PMe_{3} in $\mathrm{CCl}_{4}{ }^{36}$ followed by solvent removal, ether extraction, and concentration afforded 2 -methyl-5-chloromethyl- d_{2}-bromobenzene in 90% crude yield. Reduction of the crude alkyl chloride with lithium triethylborsdeuteride in ether followed by a standard aqueous workup afforded the desired 2 -bromoα, α, α-trideuterio- p-xylene in 83% overall yield from th, e benzylic alcohol. The product was purified by preparative gas chromatography prior to use ($6 \mathrm{ft} \times^{1 / 4} \mathrm{in} .10 \%$ SE-30/Chromosorb WAW, $140^{\circ} \mathrm{C}, 20 \mathrm{~mL} / \mathrm{min}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.351(\mathrm{~s}, 3 \mathrm{H}), 7.001(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.105(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.358(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$.

Acknowledgment is made to the donors to the Petroleum Research Fund, administered by the American Chemical Society, to the Camille and Henry Dreyfus Foundation, to the Union Carbide Corporation, to the Chevron Research Company, and to the U.S. Department of Energy (83ER13095) for their support of this work. We also thank Johnson-Matthey, Inc., for a generous

[^0]loan of rhodium trichloride. We gratefully acknowledge valuable discussions with Prof. R. S. Eisenberg, Prof. J. A. Kampmeier, and Prof. G. McLendon concerning the thermodynamic considerations in this work.

Registry No. 1, 84624-01-1; 2, 81971-46-2; 2- $d_{5}, 88704-00-1 ; 2-d_{5}$ (ortho isomer), 88704-33-0; 2- d_{5} (meta isomer), 88704-34-1; 2- d_{5} (para isomer), 88704-35-2; 2-d $d_{6}, 84624-02-2 ; 3,88704-01-2 ; 4,84624-03-3 ; p-6$, 81971-48-4; m-6, 81971-47-3; 7, 84624-04-4; 8a, 88704-02-3; 8b, 88704-03-4; 10, 88704-04-5; $\quad\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}^{2}\left(\mathrm{PMe}_{3}\right)(\stackrel{\mathrm{C}}{\mathrm{C}}=$ CHCH2CH2CH2 H, $\quad 88704-05-6 ; \quad\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)$ $\left(\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 88704-06-7$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left[2,5-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{i}-\right.$ $\left.\mathrm{Pr})_{2}\right] \mathrm{H}, 88704-07-8 ;\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(3,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right) \mathrm{H}, 88704-08-9$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(3,4-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right) \mathrm{H}, 88704-09-0$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}^{\left(\mathrm{PMe}_{3}\right)-}$ $\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right) \mathrm{H}, \quad 88704-10-3$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right) \mathrm{H}$, 88704-11-4; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}^{2}\left(\mathrm{PMe}_{3}\right)\left(m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) \mathrm{H}, \quad 88704-12-5$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) \mathrm{H}, 88704-13-6 ;\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}^{\left(\mathrm{PMe}_{3}\right)(o-}$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) \mathrm{H}, 88704-14-7$; $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)(\mathrm{THF})\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$, 88704-16-9; $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)(p \text {-tolyl })(\mathrm{THF})\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}, 88704-17-0 ;$ $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(2,5-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right)(\mathrm{THF})\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}, 88704-19-2$; $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(2-\mathrm{CH}_{3}-5-\mathrm{CP}_{3}-\mathrm{C}_{6} \mathrm{H}_{3}\right)(\mathrm{THF})\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}, 88704-21-6$; $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)(\mathrm{THF})\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}, 88704-23-8 ;\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)\left(\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)(\mathrm{THF})\right]^{-}\left[\mathrm{PF}_{6}\right]^{-}, 88704-25-0 ;\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}$ $\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}, 80298-79-9 ;\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right) \mathrm{Br}_{2}, 88704-26-1$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ $\mathrm{Rh}\left(\mathrm{PMe}_{3}\right) 1_{2}, 88704-27-2 ;\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}^{2}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Cl}, 88704-28-3$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Br}, 81971-44-0$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) 1$, 88704-29-4; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(\mathrm{CH}_{3}\right) \mathrm{Cl}, 84623-98-3 ;\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}^{2}$ $\left(\mathrm{PMe}_{3}\right)(p$-tolyl $) \mathrm{Br}, 81971-45-1$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)\left(2-\mathrm{CH}_{3}-5-\mathrm{CD}_{3}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{Br}, 88704-30-7$; $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}^{2}\left(\mathrm{PMe}_{3}\right)(\mathrm{C}=\mathrm{CH}), 88704-31-8$; $\mathrm{Na}+\left[\mathrm{H}_{2} \mathrm{Al}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{2}\right]^{-}, 22722-98-1 ; \mathrm{Li}^{+}\left[\mathrm{HBEt}_{3}\right]^{-}, 22560-16-3 ;$ $\mathrm{Li}^{+}\left[\mathrm{HB}(\text { sec }-\mathrm{Bu})_{3}\right]^{-}, 38721-52-7 ; \mathrm{K}^{+}\left[\mathrm{HB}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}\right]^{-}, 42278-67-1 ; \mathrm{AgPF}_{6}$, 26042-63-7; $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}, 13657-09-5$; toluene, 108-88-3; o-xylene, 95-47-6; m-xylene, 108-38-3; p-xylene, 106-42-3; propane, $74-98-6$; cyclopentane, 287-92-3; 1,4-di-tert-butylbenzene, 1012-72-2; cyclopentene, 142-29-0; α, α, α-trideuterio-2-bromo- p-xylene, 88704-32-9; $\mathrm{C}_{6} \mathrm{H}_{6}, 71-43-2$.

Stepwise Reductive Acidolysis of $\mathrm{OsH}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$. Mechanism of Hydrogen Elimination/Ligand Addition

Joseph W. Bruno, John C. Huffman, and Kenneth G. Caulton*
Contribution from the Department of Chemistry and Molecwiar Structure Center,
Indiano University, Bloomington, Indiana 47405. Received September 12, 1983

Abstract

The polyhydride $\mathrm{OsH}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right)_{3}$ (1) reacts with either $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ or $\mathrm{Ph}_{3} \mathrm{CPF}_{5}$ and $\mathrm{CH}_{3} \mathrm{CN}$ to give [fac-Os$\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{X}_{2}(6)\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{PF}_{6}\right)$. The acidolysis reaction proceeds in stepwise fashion through several intermediate species. Using limiting reagent quantities (acid and $\mathrm{CH}_{3} \mathrm{CN}$), it is possible to either iwlate or spectrally characterize $\mathrm{OsH}_{5}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}{ }^{+}$(2), $\mathrm{OsH}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)^{+}$(3), mer, cis $-\mathrm{OsH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}^{+}$(4), and mer-Os($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}{ }_{3}$ $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}{ }^{2+}(5)$ on the pathway to 6 . Additionally, kinetic and labeling studies indicate that H_{2} substitution by $\mathrm{CH}_{3} \mathrm{CN}$ occurs via a preequilibrium H_{2} loss and subsequent trapping by $\mathrm{CH}_{3} \mathrm{CN}$. The X -ray diffraction structure of $6\left(\mathrm{X}=\mathrm{PF}_{6}\right)$ is also reported.

The syntheses and certain reaction pathways of transition-metal phosphine polyhydrides are becoming increasingly well developed. This is particularly true for compounds containing third-row transition metals, in addition to various $\mathrm{MoH}_{4}\left(\mathrm{PR}_{3}\right)_{4}$ derivatives. ${ }^{1}$ The polyhydrides are characterized by high formal metal oxidation states and coordination numbers, as well as a strong adherence to the 18 -electron rule. This latter restriction, coupled with the relative kinetic inertness of third-row compounds, has led to diverse

[^1]efforts aimed at activating polyhydrides for intermolecular processes. One approach has been complexation with Lewis acids in the hope of enhancing the susceptibility of the transition-metal center to nucleophilic attack; ${ }^{2-6}$ it is not always clear that the

[^2]

Figure 1. ORTEP stereodrawing of $f a c-\mathrm{Os}(\mathrm{NCMe})_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}{ }^{2+}$, showing atom labeling for the inner coordination sphere. This view is down the idealized C_{3} axis of the $f a c-\mathrm{OsN}_{3} \mathrm{P}_{3}$ unit.
resulting complex is more reactive than its precursor. ${ }^{5}$
More success has been realized in systems designed to create coordinatively unsaturated intermediate fragments. This process is thermally induced in the high-valent $\mathrm{ReH}_{7}\left(\mathrm{PR}_{3}\right)_{2}$, which readily loses H_{2} to give (initially) reactive $\left[\mathrm{ReH}_{5}\left(\mathrm{PR}_{3}\right)_{2}\right]{ }^{7.8}$ For thermally stable polyhydrides, photochemical activation often leads to efficient loss of either $\mathrm{H}_{2}{ }^{9,10}$ or coordinated phosphine. ${ }^{11.12}$ The usefulness of these approaches has been amply demonstrated in $\mathrm{C}-\mathrm{H}$ activation processes ${ }^{7 \mathrm{~b}, \mathrm{c}, 11 \mathrm{~b}, 13-16}$ and the transformations of unsaturated organics. ${ }^{7 \text { a.d. } .8}$

Two other, somewhat related, means of activating polyhydrides are oxidation ${ }^{17,18}$ and acidolysis. ${ }^{186,19-22}$ Although addec acid
(5) Tebbe, F. N. J. Am. Chem. Soc. 1973, 95, 5412-5414.
(6) (a) Crotty, D. E.; Anderson, T. J.; Glick, M. D.; Oliver, J. P. Inorg. Chem. 1977, 16, 2346-2350. (b) Aripovskii, A. V.; Bulychev, B. M. Russ. J. Inorg. Chem. (Engl. Transl.) 1980, 25, 937-938. (c) Aripovskii, A. V.; Bulychev, B. M.; Krivdin, L. B.; Polyakova, V. B. Ibid. 1981, 26, 1137-1138. (d) Aripovskii, A. V.; Bulychev, B. M.; Polyakova, V. B. Ibid. 1981, 26, 1458-1461. (e) Protsky, A. N.; Bulychev, B. M.; Solveichik, G. L. Inorg. Chim. Acta 1983, 7I, 35-39.
(7) (a) Baudry, D.; Ephritikhine, M. J. Chem. Soc., Chem. Commun. 1980, 249-250. (b) Baudry, D.; Ephritikhine, M.; Felkin, H. Ibid. 1980, 1243-1244. (c) Baudry, D.; Ephritikhine, M.; Felkin, H. Ibid. 1982, 606-607. (d) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Organomet. Chem. 1982, 224, 363-376.
(8) Allison, J. D.; Wood, T. E.; Wild, R. E.; Walton, R. A. Inorg. Chem. 1982, 21, 3540-3546.
(9) (a) Geoffroy, G. L.; Wrighton, M. S. "Organometallic Photochemistry"; Academic Press: New York, 1979. (b) Geoffroy, G. L. Adv. Chem. Ser. 1975, No. 167, 181-200.
(10) Green, M. A.; Huffman, J. C.; Caulton, K. G. J. Organomet. Chem. 1983, 283, C78-C82.
(11) (a) Green, M. A.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1981, 103, 695-696. (b) Green, M. A.; Huffman, J. C.; Caulton, K. G.; Rybak, W. K.; Ziolkowski, J. J. J. Organomet. Chem. 1981, 218, C39-C43.
(12) Roberts, D. A.; Geoffroy, G. L. J. Organomet. Chem. 1981, 214, 221-231.
(13) (a) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352-354. (b) Janowicz, A. H.; Bergman, R. G. Ibid. 1983, 105, 3929-3939.
(14) (a) Crabtree, R. H. Acc. Chem. Res. 1979, 12, 331-338. (b) Crabtree, R. H.; Mellea, M. F.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1982, 104, 107-113. (c) Crabtree, R. H.; Demou, P. C.; Eden, D.; Mihelcic, J. M.; Parnell, C. A.; Quirk, J. M.; Morris, G. E. Ibid. 1982, 104, 6994-7001.
(15) (a) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1982, 104, 4240-4242. (b) Jones, W. D.; Feher, F. J. Organometallics 1983, 2, 562-563. (c) Fisher, B. J.; Eisenberg, R. Ibid. 1983, 2, 764-767
(16) Chatt, J.; Coffey, R. S. J. Chem. Soc. A 1969, 1963-1972.
(17) (a) Rhodes, L. F.; Zubkowski, J. D.; Folting, K.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 1982, 21, 4185-4192. (b) Rhodes, L. F.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1983, 105, 5137-5138.
(18) (a) Allison, J. D.; Cameron, C. J.; Wild, R. A.; Walton, R. A. J. Organomet. Chem. 1981, 218, C62-C66. (b) Allison, J. D.; Walton, R. A. J. Chem. Soc., Chem. Commun. 1983, 401-402.
(19) (a) Douglas, P. G.; Shaw, B. L. J. Chem. Soc. A 1970, 334-338. (b) Douglas, P. G.; Shaw, B. L. Inorg. Synth. 1978, 17, 64-66.
(20) (a) Carmona-Guzman, E.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1977, 1716-1721. (b) Chiu, K. W.; Jones, R. A.; Wilkinson, G.; Galas, A. M. R.; Hursthouse, M. B.; Malik, K. M. A. Ibid. 1981, 1204-1211.

empirical formula	$\mathrm{OsCl}_{2} \mathrm{P}_{5} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{C}_{31} \mathrm{H}_{3}$
color	coiorless
crystal dimensions, mm	$0.12 \times 0.12 \times 0.13$
space group	$P \overline{1}$
cell dimensions (at $-160^{\circ} \mathrm{C} ; 42$ reflections)	
a, \AA	19.653 (4)
b, \AA	11.407 (1)
c. A	10.201 (1)
α, deg	67.03 (1)
β, deg	95.69 (1)
γ, deg	94.96 (1)
molecules/cell	2
volume, \AA^{3}	2092.28
calcd density, $\mathrm{g} / \mathrm{cm}^{3}$	1.736
wavelength, \AA	0.71069
mol wt	1093.59
linear absorption coeff, cm^{-1}	34.5
total no. of reflections collected $\left(6^{\circ} \leqslant 2 \theta \leqslant 45^{\circ}\right)$	5951
no. of unique intensities	5477
no, of $F>0.0$	5302
no. with $F>\sigma(F)$	5185
no. with $F>2.33 \sigma(F)$	5023
final residuals	
$R(F)$	0.0506
$R_{\text {w }}(F)$	0.0514
goodness of fit for the last cycle	1.489
maximum Δ / σ for last cycle	0.05

(particularly acids with noncoordinating anions) can lead to simple protonation (eq 1), ${ }^{20 a, 22,23}$ in most cases either oxidation or aci-

$$
\begin{equation*}
\mathrm{MH}_{x} \mathrm{~L}_{y}+\mathrm{H}^{+} \rightarrow \mathrm{MH}_{x+1} \mathrm{~L}_{y}^{+} \tag{1}
\end{equation*}
$$

dolysis results in multiple loss of hydrides (presumably as H_{2}) if suitable ince ning ligands are available. ${ }^{16,20.21}$ As such, reactions of this type are mechanistically complex and seldom lend themselves to elucidation of discrete reaction steps. Herein we report our study of the acidolysis of $\mathrm{OsH}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3},{ }^{19 \mathrm{a}}$ a system that contradicts the above generalizations only in the sense that it is amenable to detailed mechanistic inquiry. Specifically, we have observed and characterized (to varying extents) several of the intermediate species on the pathway to multiple hydride loss.

Results and Discussion

Addition of excess $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ solution of $\mathrm{OsH}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (only sparingly soluble in neat $\mathrm{CH}_{3} \mathrm{CN}$) results

[^3]Table I1. Fractional Coordinates and 1sotropic Thermal Parameters for $\left[\mathrm{Os}(\mathrm{NCMe})_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]\left(\mathrm{PH}_{6}\right)_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

	$10^{4} x$	$10^{4} y$	$10^{4} z$	$\begin{gathered} 10 B_{\mathrm{iso}} \\ \AA^{2} \end{gathered}$
Os(1)	2369.1(2)	1934.4 (3)	3209.7 (4)	11
$\mathrm{N}(2)$	2156 (4)	3382 (7)	3867 (8)	15
C(3)	1979 (5)	4231 (9)	4065 (9)	17
C(4)	1734 (5)	5275 (10)	4310 (10)	23
N(5)	1798 (4)	3018 (7)	1341 (8)	19
C(6)	1533 (5)	3698 (9)	313 (10)	20
C(7)	1185 (5)	4535 (10)	- 1034 (10)	26
N(8)	3194 (4)	3142 (7)	2270 (8)	18
C(9)	3669 (5)	3748 (9)	1813 (10)	21
$\mathrm{C}(10)$	4296 (5)	4496 (11)	1204 (12)	29
$\mathrm{P}(11)$	2585 (1)	546 (2)	2137 (2)	16
C(12)	2417 (5)	-1174 (9)	3042 (10)	21
C(13)	2096 (5)	854 (10)	416 (10)	24
C(14)	3465 (5)	665 (9)	1615 (9)	18
C(15)	3669 (5)	1732 (10)	433 (10)	22
C(16)	4341 (5)	1872 (10)	27 (11)	27
$\mathrm{C}(17)$	4807 (5)	965 (11)	815 (11)	28
C(18)	4605 (5)	-103 (10)	1962 (11)	27
C(19)	3931 (5)	-244 (10)	2353 (10)	21
P (20)	1372 (1)	785 (2)	4149 (3)	17
C(21)	747 (5)	482 (11)	2859 (12)	28
$\mathrm{C}(22)$	1392 (5)	-798(10)	5582 (11)	25
C(23)	865 (4)	1664 (9)	4856 (11)	20
C(24)	495 (5)	2667 (10)	3911 (12)	26
C(25)	127 (5)	3385 (11)	4396 (13)	33
C(26)	124 (5)	3081 (11)	5849 (14)	33
C(27)	496 (5)	2081 (11)	6806 (13)	32
C(28)	865 (5)	1373 (10)	6325 (11)	24
P (29)	3050 (1)	1044 (2)	5308 (2)	14
C(30)	3286 (5)	-612 (9)	5991 (10)	22
C(31)	2726 (5)	1139 (10)	6892 (10)	21
C(32)	3894 (4)	1863 (8)	5254 (9)	15
C(33)	4032 (5)	2787 (9)	5837 (10)	21
C(34)	4665 (5)	3422 (10)	5768 (11)	27
C(35)	5168 (5)	3176 (11)	5057 (11)	29
C(36)	5044 (5)	2287 (10)	4452 (11)	26
C(37)	4402 (5)	1631 (10)	4535 (10)	22
$\mathrm{Cl}(38)$	6619 (2)	3754 (3)	-2560 (3)	35
C(39)	7058 (6)	3238 (12)	-865 (12)	37
$\mathrm{Cl}(40)$	6810 (2)	1675 (3)	188 (3)	51
$\mathrm{P}(41)$	6892 (1)	4587 (2)	2591 (3)	21
$\mathrm{F}(42)$	6225 (3)	5394 (6)	2228 (6)	34
$F(43)$	7559 (3)	3776 (6)	2975 (7)	35
$F(44)$	7336 (4)	5715 (7)	2857 (8)	43
$F(45)$	7058 (3)	5206 (6)	954 (6)	36
$1 \cdot(46)$	6730 (3)	3946 (9)	4220 (6)	54
$1 *(47)$	6436 (4)	3477 (6)	2280 (8)	43
$\mathrm{P}(48)$	808 (2)	7453 (4)	221 (3)	37
$1:(49)$	435 (6)	7042 (12)	-995 (11)	101
$\mathrm{F}(50)$	1178 (5)	7828 (7)	1458 (8)	67
F(51)	302 (8)	6679 (24)	1194 (20)	218
$\mathrm{F}^{\prime}(52)$	1272 (6)	6331 (11)	655 (12)	95
F(53)	421 (9)	8669 (17)	-239 (18)	166
F(54)	1291(11)	8349 (16)	-814 (16)	171

in moderate gas evolution. At $25^{\circ} \mathrm{C}$ this continues for $45-60$ min with no visible precipitate. Addition of $\mathrm{Et}_{2} \mathrm{O}$ causes prompt precipitation of a colorless solid. The ${ }^{31} \mathrm{P}$ NMR spectrum of this compound contains a singlet at -36.89 ppm . In addition to $\mathrm{P}-\mathrm{Ph}$ and $\mathrm{P}-\mathrm{Me}(18 \mathrm{H})$ resonances, the ${ }^{1} \mathrm{H}$ NMR spectrum contains a singlet $(9 \mathrm{H})$ at 2.32 ppm , attributed to $\mathrm{CH}_{3} \mathrm{CN}$ ligands. These are also evident as two $\nu(\mathrm{C} \equiv \mathrm{N})$ bands in the infrared spectrum. There is no evidence of metal-bound hydride anywhere in the ${ }^{1} \mathrm{H}$ NMR spectrum. These data are consistent with the formulation fac- $\mathrm{Os}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}{ }^{2+}$, an 18 -electron dication. We also found that treatment of $\mathrm{OsH}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$) yielded this same complex. In view of the simplicity of the NMR spectra, we sought crystallographic verification of the proposed structure. Suitable crystals (from a $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ preparation) were obtained by cooling a solution of the compound in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$. The resulting structure corroborated the process shown in eq $2\left(\mathrm{P} \equiv \mathrm{PMe}_{2} \mathrm{Ph}\right)$. During the course of this work Crabtree and co-workers reported

Figure 2. Space-filling model stereodrawings of fac-Os(NCMe) 3^{-} $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}{ }^{2+}$ from two perspectives. Upper: three MeCN ligands project toward viewer (methyl hydrogens not shown). Lower: three $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands project toward viewer.

Table 1II. Bond Distances (\AA) and Angles (deg) for $\left[\mathrm{Os}(\mathrm{NCMe})_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right]\left(\mathrm{Pl}_{6}\right)_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$

	Distances			
$O s-\mathrm{P}(11)$	$2.334(2)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.150(11)$	
$\mathrm{Os}-\mathrm{P}(20)$	$2.329(2)$	$\mathrm{N}(5)-\mathrm{C}(6)$	$1.139(12)$	
$\mathrm{Os}-\mathrm{P}(29)$	$2.318(2)$	$\mathrm{N}(8)-\mathrm{C}(9)$	$1.137(12)$	
$\mathrm{Os}-\mathrm{N}(2)$	$2.096(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.439(13)$	
$\mathrm{Os}-\mathrm{N}(5)$	$2.097(8)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.473(14)$	
$\mathrm{Os}-\mathrm{N}(8)$	$2.081(8)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.479(13)$	
Angles				
$\mathrm{P}(11)-\mathrm{Os}-\mathrm{P}(20)$	$93.3(1)$	$\mathrm{P}(29)-\mathrm{Os}-\mathrm{N}(8)$		
$\mathrm{P}(11)-\mathrm{Os}-\mathrm{P}(29)$	$98.3(1)$	$\mathrm{N}(2)-\mathrm{Os}-\mathrm{N}(5)$	$89.8(2)$	
$\mathrm{P}(20)-\mathrm{Os}-\mathrm{P}(29)$	$94.7(1)$	$\mathrm{N}(2)-\mathrm{Os}-\mathrm{N}(8)$	$83.1(3)$	
$\mathrm{P}(11)-\mathrm{Os}-\mathrm{N}(2)$	$171.6(2)$	$\mathrm{N}(5)-\mathrm{Os}-\mathrm{N}(8)$	$85.2(3)$	
$\mathrm{P}(11)-\mathrm{Os}-\mathrm{N}(5)$	$89.3(2)$	$\mathrm{Os}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$170.7(7)$	
$\mathrm{P}(1)-\mathrm{Os}-\mathrm{N}(8)$	$90.6(2)$	$\mathrm{Os}(1)-\mathrm{N}(5)-\mathrm{C}(6)$	$173.5(8)$	
$\mathrm{P}(20)-\mathrm{Os}-\mathrm{N}(2)$	$90.3(2)$	$\mathrm{Os}(1)-\mathrm{N}(8)-\mathrm{C}(9)$	$175.9(8)$	
$\mathrm{P}(20)-\mathrm{Os}-\mathrm{N}(5)$	$89.9(2)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$178.1(10)$	
$\mathrm{P}(20)-\mathrm{Os}-\mathrm{N}(8)$	$173.5(2)$	$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$177.8(10)$	
$\mathrm{P}(29)-\mathrm{Os}-\mathrm{N}(2)$	$89.0(2)$	$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$177.8(11)$	
$\mathrm{P}(29)-\mathrm{Os}-\mathrm{N}(5)$	$170.9(2)$			

their observation of this same acidolysis reaction; ${ }^{21 b}$ our results are in agreement with theirs.
$\mathrm{OsH}_{4} \mathrm{P}_{3}+2 \mathrm{H}^{+}$or $2 \mathrm{Ph}_{3} \mathrm{C}^{+} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{\mathrm{CH}_{3} \mathrm{CN}}$ fac- $\mathrm{OsP}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}{ }^{2+}$
Structure of $\left[\right.$ fac $\left.-\mathrm{Os}\left(\mathrm{PMe}_{2} \mathbf{P h}\right)_{3}\left(\mathrm{CH}_{3} \mathbf{C N}\right)_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$. The X-ray diffraction study confirms (Tables I-III and Figures 1 and 2) the facial octahedral geometry indicated by the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data and the $\mathrm{C} \equiv \mathrm{N}$ infrared data. The colorless crystals yield a lattice with 1 mol of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for each osmium, a result that was quantitatively confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The three Os-N distances are identical to within 2σ, while the three $\mathrm{Os}-\mathrm{P}$ distances differ by less than 5σ. Among the acetonitrile ligands, $\mathrm{C} \equiv \mathrm{N}$ and $\mathrm{C}-\mathrm{CH}_{3}$ bond lengths are identical to within $1-3 \sigma$, and the $\mathrm{N} \equiv$ $\mathrm{C}-\mathrm{C}$ angles differ insignificantly from 180°. Noteworthy is the manner in which the $f a c-\mathrm{MX}_{3} \mathrm{Y}_{3}$ unit deviates from orthogonality in a system where the X ligands are bulky and the Y ligands are slender. The $\mathrm{P}-\mathrm{Os}-\mathrm{P}$ angles predictably increase from 3 to 8° above 90°, while the $\mathrm{N}-\mathrm{Os}-\mathrm{N}$ angles decrease from 5 to 7° below 90°. However, these distortions occur in a manner such that all cis $\mathrm{N}-\mathrm{Os}-\mathrm{P}$ angles remain at $90.0 \pm 1.0^{\circ}$. The trigonal distortions thus occur so as to avoid any decrease in cis N...P distances.

Mechanism of Acidolysis. In view of the multistep nature of the conversion of $\mathrm{OsH}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ to fac- $\mathrm{Os}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ -
$\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}{ }^{2+}$, we sought information on the sequence of protonation (twice), H_{2} elimination (three times), and $\mathrm{CH}_{3} \mathrm{CN}$ addition (three times) steps. The course of the acidolysis process is most conveniently studied via ${ }^{31} \mathrm{P}$ NMR. Hence, $\mathrm{OsH}_{4} \mathrm{P}_{3}\left({ }^{31} \mathrm{P}=-28.8\right.$ ppm) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ ($50: 50$) in an NMR tube, and excess $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ was added to start the reaction. Initially one observes a singlet resonance at -33.96 ppm , which decays over $20-30 \mathrm{~min}$ at room temperature, giving rise to another singlet at -33.80 ppm . This signal also decays over $10-20 \mathrm{~min}$, with a concurrent growth of a singlet at -36.89 ppm , due to formation of $f a c-\mathrm{OsP}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}{ }^{2+}$. To simplify the discussion of this process we first present a proposed mechanistic pathway (Scheme I). Although the overall conversion of $\mathbf{1}$ to $\mathbf{6}$ is portrayed as passing through a large number of intermediates, we have successfully obtained spectroscopic characterization of each numbered species. All contain 18 valence electrons but display varying stabilities and lifetimes. We now present conditions that allowed characterization of the individual species.

Scheme I

$$
\begin{aligned}
& \underset{\mathbf{1}}{\mathrm{OsH}_{4} \mathrm{P}_{3}}+\mathrm{H}^{+} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{ } \mathrm{OsH}_{\mathbf{2}} \mathrm{P}_{3}{ }^{+} \\
& 2 \xrightarrow[-\mathrm{H}_{2}]{\mathrm{CH}_{3} \mathrm{CN}} \mathrm{OsH}_{3} \mathrm{P}_{3}\left(\underset{3}{\mathrm{CH}_{3} \mathrm{CN}}\right)^{+} \\
& 3 \xrightarrow[-\mathrm{H}_{2}]{\mathrm{CH}_{3} \mathrm{CN}} \mathrm{OsHP}_{3}\left(\mathrm{CH}_{4} \mathrm{CN}\right)_{2}{ }^{+} \\
& 4+\mathrm{H}^{+} \xrightarrow[-\mathrm{H}_{2}]{\mathrm{CH}_{3} \mathrm{CN}} \text { mer- } \mathrm{OsP}_{3}\left(\underset{5}{\left.\mathrm{CH}_{3} \mathrm{CN}\right)_{3}{ }^{2+}}\right. \\
& 5 \rightarrow f a c-\mathrm{OsP}_{3}\left(\mathrm{CH}_{6} \mathrm{CN}\right)_{3}{ }^{2+}
\end{aligned}
$$

Protonation of $\mathrm{OsH}_{4} \mathrm{P}_{3}$ to $\left[\mathrm{OsH}_{5}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right] \mathrm{BF}_{4}$ (2). Douglas and Shaw ${ }^{19}$ have presented conductometric evidence for the simple protonation of $\mathrm{OsH}_{4} \mathrm{P}_{3}$ with HCl and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, but the presence of $\mathrm{OsH}_{5} \mathrm{P}_{3}{ }^{+}$was not spectroscopically verified. Since subsequent chemistry (in Scheme I) seemed to involve $\mathrm{CH}_{3} \mathrm{CN}$, we carried out the protonation of $\mathrm{OsH}_{4} \mathrm{P}_{3}$ in neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (eq 3). The ${ }^{31} \mathrm{P}$

$$
\begin{equation*}
\mathrm{OsH}_{4} \mathrm{P}_{3}+\mathrm{H}^{+} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{ } \mathrm{OsH}_{5} \mathrm{P}_{3}^{+} \tag{3}
\end{equation*}
$$

spectrum showed the transient singlet at -33.96 ppm detected previously in the experiment with excess acid, but it now showed no decay (i.e., in the absence of $\mathrm{CH}_{3} \mathrm{CN}$). Selective coupling to metal-bound hydrides did lead to a broadened ${ }^{31} \mathrm{P}$ NMR signal, but the coupling was too small to resolve. At $-60^{\circ} \mathrm{C}$, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum showed a very broad signal, indicating a fluxional process was slowed but not frozen out. The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 220 MHz) exhibited, in addition to $\mathrm{P}-\mathrm{Me}$ and $\mathrm{P}-\mathrm{Ph}$ resonances, a hydride signal at -7.02 ppm . At lower operating frequency (60 MHz) this was resolvable into a quartet with ${ }^{2} J_{\mathrm{PH}}=4 \mathrm{~Hz}$, consistent with an $\mathrm{OsP}_{3} \mathrm{H}_{x}{ }^{+}$formulation. Theoretically the value of x could be determined by integration of the ${ }^{1} \mathrm{H}$ NMR spectrum, but we have observed inaccuracies in the integration of compounds like these. ${ }^{17 \mathrm{~b}}$ To show that $x=5, \mathrm{OsH}_{4} \mathrm{P}_{3}$ was protonated with excess $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$, and formation of $\mathrm{OsP}_{3} \mathrm{H}_{x}^{+}(\mathbf{2})$ was confirmed by ${ }^{31} \mathrm{P}$ NMR spectroscopy. Excess NEt_{3} was then added and another spectrum recorded, showing complete regeneration of $\mathrm{OsH}_{4} \mathrm{P}_{3}$. This was taken as evidence of simple protonation and thus establishes 2 as $\mathrm{OsH}_{5} \mathrm{P}_{3}{ }^{+}$. Interestingly, if limiting quantities of acid are employed, both $\mathrm{OsH}_{4} \mathrm{P}_{3}$ and $\mathrm{OsH}_{5} \mathrm{P}_{3}{ }^{+}$are observed via ${ }^{31} \mathrm{P}$ NMR spectroscopy, indicating that this acid-base conjugate pair does not undergo rapid exchange under these conditions.

Spectral Characterization of $\left[\mathrm{OsH}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left(\mathrm{BF}_{4}\right)$ (3). Considering stoichiometry alone, the production of 3 (Scheme I) requires only 1 equiv each of acid and $\mathrm{CH}_{3} \mathrm{CN}$. Hence, the reaction (eq 4) was carried out with 1 equiv of acid and only a

$$
\begin{equation*}
\underset{1}{\mathrm{OsH}_{4} \mathrm{P}_{3}}+\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{CN} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{ } \mathrm{OsH}_{3} \mathrm{P}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)^{+}+\mathrm{H}_{2} \tag{4}
\end{equation*}
$$

slight excess of $\mathrm{CH}_{3} \mathrm{CN}$. Subsequent spectra confirmed that further reaction of $\mathbf{3}$ was negligible with this stoichiometry and at $25^{\circ} \mathrm{C}$.

At $25^{\circ} \mathrm{C}$ the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ displays a singet at -33.80 ppm . Due to near overlap with the resonance of $2(-33.96$ ppm) a selectively hydride-coupled spectrum could not be obtained. Moreover, the ${ }^{1} \mathrm{H}$ NMR spectrum indicated the coupling constant (${ }^{2} J_{\mathrm{PH}}$) was very small (vide infra) and probably not resolvable in the ${ }^{31} \mathrm{P}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum showed the aforementioned resonances for 2 , as well as free $\mathrm{CH}_{3} \mathrm{CN}(1.97$ $\mathrm{ppm})$ and $\mathrm{Et}_{2} \mathrm{O}(3.49(\mathrm{q}), 1.15(\mathrm{t}))$ from the $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$. The spectrum of 3 contains $\mathrm{P}-\mathrm{Ph}$ and $\mathrm{P}-\mathrm{Me}$ resonances at 7.51 and 1.83 ppm , an $\mathrm{Os}-\mathrm{H}$ quartet $\left({ }^{2} J_{\mathrm{P}-\mathrm{H}}=4 \mathrm{~Hz}\right)$ at -10.02 ppm , and a singlet at 2.31 ppm for the $\mathrm{CH}_{3} \mathrm{CN}$ ligand. It should be noted that the facile fluxional process (rapid even at $-35^{\circ} \mathrm{C}$) in $\mathbf{3}$ is entirely consistent with its formulation as a seven-coordinate species. For example, $\mathrm{K}^{+} \mathrm{OsH}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}{ }^{-}$and $\mathrm{OsH}_{4} \mathrm{P}_{3}(\mathbf{1})$ are both 18 -electron compounds with multiple hydride ligands; the former (six-coordinate) is conformationally rigid at $25^{\circ} \mathrm{C}^{24}$ while the latter is stereochemically nonrigid.

Synthesis of $\left[\mathrm{OsH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)$ (4). It is interesting to note that under conditions of excess acid and $\mathrm{CH}_{3} \mathrm{CN}$, compound 4 (Scheme I) is never observed during the ${ }^{31} \mathrm{P}$ NMR monitoring of the conversion of $\mathbf{1}$ to 6 . Since 4 is a monocation and a likely intermediate in the process, we carried out the reaction shown in eq 5 with 1 equiv of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ but a large excess of

$$
\begin{equation*}
\mathrm{OsH}_{4} \mathrm{P}_{3}+\mathrm{H}^{+} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{\mathrm{CH}_{3} \mathrm{CN}} \mathrm{OsHP}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}+ \tag{5}
\end{equation*}
$$

$\mathrm{CH}_{3} \mathrm{CN}$; under these conditions, the reaction is observed to proceed through species 2 and 3 (${ }^{31} \mathrm{P}$ NMR) but never reaches compound 6. The product (4) exhibits an $\mathrm{A}_{2} \mathrm{~B}$ pattern with a doublet at -26.05 ppm and a triplet at -31.40 ppm (${ }^{2} J_{\mathrm{P}-\mathrm{P}}=21 \mathrm{~Hz}$). Selective coupling to the hydride ligand converts the doublet to a doublet of doublets (${ }^{2} J_{\mathrm{P}-\mathrm{H}}=16 \mathrm{~Hz}$) and the triplet to a virtual quartet in which ${ }^{2} J_{\mathrm{P}-\mathrm{H}} \approx{ }^{2} J_{\mathrm{P}-\mathrm{P}}$. The ${ }^{1} \mathrm{H}$ NMR spectrum shows $\mathrm{P}-\mathrm{Ph}$ at 7.2-7.6 ppm, P-Me at $1.59(12 \mathrm{H})$ and $1.37 \mathrm{ppm}(6 \mathrm{H}), \mathrm{CH}_{3} \mathrm{CN}$ at 2.51 and 1.95 ppm , and $\mathrm{Os}-\mathrm{H}$ at -16.60 ppm (virtual quartet, J (apparent) $\approx 15 \mathrm{~Hz}$). Although the $\mathrm{A}_{2} \mathrm{~B}$ phosphine pattern could be consistent with either a facial or meridional arrangement of these nuclei, the similar (and somewhat small) P-H coupling constants indicated the hydride was cis to all three phosphines. This observation together with the presence of two inequivalent $\mathrm{CH}_{3} \mathrm{CN}$ ligands requires the mer.cis structure as shown.

$$
4, \mathrm{~L}=\mathrm{CH}_{3} \mathrm{CN}
$$

These data are also consistent with data for mer, cis- $\mathrm{RuH}(\mathrm{ttp}) \mathrm{L}_{2}{ }^{+}$, in which ttp is $\mathrm{PhP}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}$ and $\mathrm{L}=\mathrm{CH}_{3} \mathrm{CN} .{ }^{25}$ This compound exhibits a virtual quartet for the hydride with $J_{\mathrm{P}_{1}-\mathrm{H}}$ $\approx J_{\mathrm{P}_{2}-\mathrm{H}}=19 \mathrm{~Hz}$. Further, mer, cis $-\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}{ }^{+}$has been prepared from $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ in $\mathrm{CH}_{3} \mathrm{CN} .{ }^{26}$ We suspected that $\mathrm{OsH}_{4} \mathrm{P}_{3}$ could likewise be converted to 4 with 1 equiv of $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$; indeed the reaction proceeds cleanly in this manner, as verified by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
Crabtree has shown that cationic hydrides of iridium with weakly bound ligands $\mathrm{L}\left(\mathrm{IrH}_{2} \mathrm{~L}_{2} \mathrm{P}_{2}{ }^{+}\right)$are active in a wide range of interesting transformations of small organics. ${ }^{14}$ However, no such activity was exhibited by 6 or by $\mathrm{WH}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{P}_{3}{ }^{2+}$, ostensibly because the $\mathrm{CH}_{3} \mathrm{CN}$ ligand is too tightly bound. ${ }^{21}$ In compound 4 , however, one $\mathrm{CH}_{3} \mathrm{CN}$ is trans to a hydride, and previous workers have observed facile dissociation under such

[^4]circumstances. ${ }^{25,27}$ Indeed, addition of $\mathrm{CH}_{3} \mathrm{CN}$ to an NMR solution of $4\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ results (within 5 min) in a decrease in the resonance at 2.51 ppm with a concurrent growth of a signal for free $\mathrm{CH}_{3} \mathrm{CN}$ at 1.97 ppm , indicating facile exchange. This suggests that 4 may be reactive with other organic nucleophiles.

Finally, we sought evidence that 4 truly lies on the pathway to 6. In an NMR tube, 4 (prepared with 1 equiv of H^{+}) was dissolved in a mixture of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CD}_{3} \mathrm{CN}$ and a spectrum recorded. Addition of a second equivalent of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ caused immediate disappearance of 4 (${ }^{31} \mathrm{P}$ NMR), ultimately giving 6 , as verified by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Spectral Observation of 5. When the acidification of 4 was carried out (as above) and monitored via ${ }^{31} \mathrm{P}$ NMR, we observed an intermediate compound 5 with a lifetime of only a few minutes at room temperature. Like compound $\mathbf{4}, \mathbf{5}$ is never observed when $\mathrm{OsH}_{4} \mathrm{P}_{3}$ is converted to 6 with excess acid. Compound 5 exhibits an $\mathrm{A}_{2} \mathrm{~B}$ pattern in the ${ }^{31} \mathrm{P}$ NMR spectrum (distinct from that of 4) with a doublet at -30.5 ppm and a triplet at $-40.8 \mathrm{ppm}\left({ }^{2} J_{\mathrm{P}-\mathrm{P}}\right.$ $=17 \mathrm{~Hz}$). Unfortunately, this compound is too short-lived for further spectroscopic characterization. Protonation of 4 and loss of H_{2} would presumably occur via two steps (eq 6 and 7). We

$$
\begin{gather*}
\mathrm{OsHP}_{3} \mathrm{~L}_{2}^{+}+\mathrm{H}^{+} \rightarrow \mathrm{OsH}_{2} \mathrm{P}_{3} \mathrm{~L}_{2}{ }^{2+} \tag{6}\\
\mathrm{OsH}_{2} \mathrm{P}_{3} \mathrm{~L}_{2}^{2+}+\mathrm{L} \xrightarrow{-\mathrm{H}_{2}} \text { mer }-\mathrm{OsP}_{3} \mathrm{~L}_{3}^{2+}
\end{gather*}
$$

disfavor the identification of $\mathbf{5}$ as $\mathrm{OsH}_{2} \mathrm{P}_{3} \mathrm{~L}_{2}{ }^{2+}$ because the latter is seven-coordinate and would probably show equivalent phosphines due to rapid fluxionality. Rather, we suspect 5 is the meridional isomer of $\mathrm{OsP}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}{ }^{2+}$, which rapidly isomerizes to facial 6. It would appear that the conversions $4 \rightarrow 5$ and $5 \rightarrow 6$ proceed at comparable rates (with the former slightly faster) under the conditions employed, since 5 is only observed when large quantities of 4 are initially present.

General Considerations

The present work exemplifies several interesting points related to polyhydride reaction patterns. First, it has been noted that although cationic dihydrides are somewhat common, ${ }^{14,28}$ cationic $\mathrm{MH}_{x} \mathrm{~L}_{y}{ }^{+}$species with $x \geq 3$ are relatively rare. ${ }^{21 b}$ In this work both $\mathbf{2}$ and $\mathbf{3}$ are observed, but both readily lose H_{2}, particularly in the presence of potential ligands $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$. This reductive elimination is not unexpected in high-valent, highly coordinatively saturated compounds such as these. However, the fact that they proceed slowly enough to observe is a surprising consequence of the kinetic inertness of third-row transition metals. Further, the identification of $\mathbf{2}$ verifies that when metal delectrons are available, protonolysis seems to occur via a stepwise protonation-elimination sequence. The difference between this pathway and reaction with $\mathrm{Ph}_{3} \mathrm{C}^{+}$is that the latter appears to proceed via hydride abstraction (possibly via an electron transfer/H atom transfer sequence ${ }^{18,29}$). Thus, while acidolysis converts $\mathbf{1}$ to $\mathbf{3}$ via 2, $\mathrm{Ph}_{3} \mathrm{C}^{+}$is thought to convert 1 directly to 3 , provided $\mathrm{CH}_{3} \mathrm{CN}$ is present. If $\mathbf{1}$ is treated with $\mathrm{Ph}_{3} \mathrm{C}^{+}$in neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the result is a complex mixture of uncharacterized products.

The acidolysis of $\mathbf{1}$ to 6 involves two protonation steps and three H_{2} eliminations. Protonation of cationic $\mathrm{Rh}(\text { diphos })_{2}{ }^{+}$has been reported; ${ }^{30}$ similarly, (arene) $\mathrm{Mo}\left(\mathrm{PR}_{3}\right)_{3}$ can be protonated once in dilute acid and twice in concentrated acid (eq 8). ${ }^{31}$ In the

$$
\begin{equation*}
\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{MoP}_{3} \xrightarrow{\mathrm{H}^{+}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{MoP}_{3} \mathrm{H}^{+} \xrightarrow{\mathrm{H}^{+}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{MoP}_{3} \mathrm{H}_{2}{ }^{2+} \tag{8}
\end{equation*}
$$

(27) Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1976, 98, 2134-2143.
(28) (a) Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1976, 98 , 2143-2147. (b) Schrock, R. R.; Osborn, J. A. Ibid. 1976, 98, 4450-4455. (c) Shapley, J. R.; Schrock, R. R.; Osborn, J. A. Ibid. 1969, 91, 2816-2817. (d) Schrock, R. R.; Osborn, J. A. Ibid. 1971, 93, 2397-2407.
(29) Hayes, J. C.; Cooper, N. J. J. Am. Chem. Soc. 1982, 104, 5570-5572.
(30) Halpern, J.; Riley, D. P.; Chan, A. S. C.; Pluth, J. J. J. Am. Chem. Soc. 1977, 99, 8055-8057.

Table 1V. Kinetics of Reaction of 2 with $\mathrm{CH}_{3} \mathrm{CN}^{a}$

solution	$\left[\mathrm{CH}_{3} \mathrm{CN}\right], \mathrm{M}$	$k_{\text {obsd }}{ }^{b}{ }^{b} \mathrm{~s}^{-1}$
1	0.69	$(2.8=0.2) \times 10^{-4}$
2	3.5	$(3.1 \pm 0.2) \times 10^{-4}$

${ }^{a}$ Both solutions 0.093 M in $2, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent, $20^{\circ} \mathrm{C}$.
${ }^{b}$ Determined from the least-squares slope of plots of $\ln \left|(2)_{v} /(2)_{t}\right|$ vs. time. Errors are estimated uncertainties of slopes.
present system this sequence is clearly not operative. As shown in Scheme I, we observe single protonation to $\mathrm{OsH}_{5} \mathrm{P}_{3}{ }^{+}$(2), which must then lose two molecules of H_{2} and gain two $\mathrm{CH}_{3} \mathrm{CN}$ ligands before the second protonation occurs. The ready isolation of monocation 4 provides strong evidence for this. As such, we concur with the postulate that the σ-donor $\mathrm{CH}_{3} \mathrm{CN}$ ligands in 4 are required to render the cationic osmium center basic enough for a second protonation. ${ }^{216}$

A final point concerns the conversions $2 \rightarrow 3$ and $3 \rightarrow 4$. As shown in Scheme I, both are thought to involve reaction with $\mathrm{CH}_{3} \mathrm{CN}$. Again, this is verified in the first case by the long lifetime of $\mathbf{2}$ in neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. While it appears that incoming ligand serves to induce H_{2} elimination, the exact mechanism of this transformation is unclear. Since this is a reaction of fundamental importance in polyhydride chemistry, further mechanistic definition was desirable. We envisioned two likely pathways and chose to study the conversion of $\mathbf{2}$ to $\mathbf{3}$ since $\mathbf{2}$ is more readily available in pure form. One possible mechanism would be a $\mathrm{S}_{\mathrm{N}} 2$ process, first order in $\mathrm{CH}_{3} \mathrm{CN}$, proceeding through the transition state $\left[\mathrm{OsH}_{5} \mathrm{P}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)^{+}\right]^{*}$ of unspecified structure and bonding.

The second mechanistic alternative is depicted in eq 9 and

$$
\begin{gathered}
\mathrm{OsP}_{3} \mathrm{H}_{x} \mathrm{~L}_{y}+\frac{k_{1}}{k_{-1}} \mathrm{H}_{2}+\left[\mathrm{OsP}_{3} \mathrm{H}_{x-2} \mathrm{~L}_{y}{ }^{+}\right] \xrightarrow[k_{2}]{\mathrm{L}} \mathrm{OsP}_{3} \mathrm{H}_{x-2} \mathrm{~L}_{y+1}+ \\
\mathbf{2}, x=5, y=0 \\
\mathbf{3}, x=3, y=1
\end{gathered}
$$

involves an equilibrium H_{2} loss to give a reduced osmium compound. This 16 -electron transient is expected to be very reactive and the equilibrium should lie well to the left. Upon addition of L, the reduced species is trapped rapidly to give the resulting product. Any ability of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to stabilize the intermediate is expected to have little effect on the process since $\mathrm{CH}_{3} \mathrm{CN}$ should displace $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ very readily. ${ }^{32}$

We have employed two probes to distinguish the mechanistic possibilities. Specifically, the $\mathrm{S}_{\mathrm{N}} 2$ process should exhibit a rate dependence on the concentrations of both 2 and $\mathrm{CH}_{3} \mathrm{CN}$, or overall second-order behavior. The mechanism in eq 9 should follow the rate equation in eq 10 , derived by applying the steady-state ap-

$$
\begin{equation*}
-\frac{\mathrm{d}[\mathbf{2}]}{\mathrm{d} t}=k_{1}[\mathbf{2}]\left[1-\frac{k_{-1}\left[\mathrm{H}_{2}\right]}{k_{2}[\mathrm{~L}]+k_{-1}\left[\mathrm{H}_{2}\right]}\right] \tag{10}
\end{equation*}
$$

proximation to the 16 -electron intermediate. In the limiting case where $k_{2}[\mathrm{~L}] \gg k_{-1}\left[\mathrm{H}_{2}\right]$, eq 10 reduces to eq 11 , indicating an

$$
\begin{equation*}
-\mathrm{d}[\mathbf{2}] / \mathrm{d} t=k_{1}[\mathbf{2}] \tag{11}
\end{equation*}
$$

overall first-order process which is independent of $\mathrm{CH}_{3} \mathrm{CN}$ concentration. Thus, the process in eq 9 reduces to a two-step reaction in which the first step is rate limiting. The above assumption is reasonable since the reaction is carried out under a N_{2} atmosphere at ambient pressure. Thus the concentration of H_{2} in solution is considerably lower than that of $\mathrm{CH}_{3} \mathrm{CN}$.
The kinetic order of the reaction (2 with $\mathrm{CH}_{3} \mathrm{CN}$) with respect to $\mathrm{CH}_{3} \mathrm{CN}$ was determined at $20^{\circ} \mathrm{C}$. This was conveniently achieved by monitoring the disappearance of 2 (as well as the appearance of 3 and 6) via ${ }^{31} \mathrm{P}$ NMR spectroscopy. Rates were

[^5]obtained with a 4.5 - and 23 -fold excess of $\mathrm{CH}_{3} \mathrm{CN}$ (vs. 2), and the resulting values of $k_{\text {obsd }}$ are given in Table IV. Two observations are noteworthy. First, both reactions followed first-order kinetics over 2-3 half-lives, even though the first reaction did not involve pseudo-first-order conditions; i.e., there was not a large excess of $\mathrm{CH}_{3} \mathrm{CN}$. Second, the two rates are equal to within ca. 10%; a first-order dependence on $\mathrm{CH}_{3} \mathrm{CN}$ would have resulted in a 5 - to 6 -fold difference in $k_{\text {obsd }}$ for the two reactions. We assume that the small difference reflects the accuracy of the method and consider the reaction rate to be independent of $\mathrm{CH}_{3} \mathrm{CN}$ concentration.
It is possible to augment the kinetic evidence for the preequilibrium mechanism in eq 9 by direct detection of the equilibrium itself. This equilibrium, if it exists, provides a mechanism for exchange of hydride ligands in $\mathrm{OsH}_{5} \mathrm{P}_{3}{ }^{+}$with D_{2}, without requiring the presence of $\mathrm{CH}_{3} \mathrm{CN}$. Thus, $\mathrm{OsH}_{4} \mathrm{P}_{3}$ (1) was protonated with $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (2.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred under 400 psi of D_{2} for 1 h . At that time excess NEt_{3} was added and the resulting 1 a nalyzed for deuterium content. The ${ }^{2} \mathrm{D}$ NMR spectrum exhibited a signal at ca. -9.0 ppm , indicative of $\mathrm{Os}-\mathrm{D}$. There was no evidence of deuterium in the phosphine ligands. The proton spectrum of 1 was then integrated to determine the approximate extent of D incorporation; this indicated a 70% loss of $\mathrm{Os}-\mathrm{H}$ in favor of $\mathrm{Os}-\mathrm{D}$. Thus, both the kinetics and the deuterium labeling study favor eq 9 as the pathway from 2 to $3 .{ }^{34}$ Acetonitrile thus functions to trap the product of a dihydrogen reductive elimination equilibrium and does not actively displace H_{2}.

Summary

The conversion of $\mathrm{OsH}_{4} \mathrm{P}_{3}$ (1) to $\mathrm{fac}-\mathrm{OsP}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}{ }^{2+}(6)$ is a multistep process involving several intermediates. This multiple loss of hydride ligands (as H_{2}) appears to be a general reaction of polyhydrides, induced by acidolysis, hydride abstraction, or oxidation. Using combinations of limiting reagent concentrations and/or low temperatures we have been able to isolate or spectroscopically observe many of these intermediate species. From these studies several characteristics of osmium polyhydrides have been identified. First, although the overall conversion $\mathbf{1} \rightarrow \mathbf{6}$ involves two protonations, these occur in separated (i.e., not consecutive) steps. The second protonation is only observed after formation of $\mathrm{OsHP}_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}{ }^{+}$, apparently facilitated by the electron-donating ability of $\mathrm{CH}_{3} \mathrm{CN}$. Also, osmium compounds with coordination number greater than six show a marked tendency toward fluxionality while six-coordinate complexes are rigid. Such rigidity may account for the stereospecificity of the acidolysis of 4 (mer, cis) to 5 (mer) rather than directly to 6 (fac). Further, the reactions observed here show a tendency toward achieving octahedral coordination (within the constraints of the 18 -electron rule) when suitable reagent stoichiometries are provided. Finally, the favorable (i.e., sluggish) kinetics of this particular system have allowed elucidation of several reactivity patterns of polyhydrides. These may serve as an acceptable model for acidolysis reactions of more labile systems, as well as for fundamental polyhydride transformations other than acidolysis.

Experimental Section

All manipulations were carried out under a N_{2} atmosphere by using standard Schlenk techniques. Solid transfers were accomplished in a Vacuum Atmospheres Corp. glovebox. Methylene chloride (Aldrich) and acetonitrile (Aldrich) were distilled (under N_{2}) from $\mathrm{P}_{2} \mathrm{O}_{5}$ and CaH_{2}, respectively, and stored over Linde 4A molecular sieves. $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ (Aldrich) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ prior to use and stored under $\mathrm{N}_{2} . \mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (Aldrich) was used as received and transferred under
(33) Details of the data collection, processing, and refinement techniques are given in: Huffman, J. C.; Lewis, L. N.; Caulton, K. G. Inorg. Chem. 1980, 19, 2755
(34) A referee has suggested that the available data are consistent with a preequilibrium in eq $9(x=5, y=0)$ with dissociation of $\mathrm{PMe}_{2} \mathrm{Ph}$ instead of H_{2}. We are less attracted to this possibility since $\mathrm{PMe}_{2} \mathrm{Ph}$, once dissociated, would probably not be competitive with the 23 -fold excess of MeCN for recoordination to osmium; the predicted bis(phosphine) complexes were never observed.
a N_{2} purge. $\mathrm{OsH}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ was synthesized according to the literature method, ${ }^{19 \mathrm{a}}$ starting from OsO_{4} (Johnson-Matthey).
${ }^{31} \mathrm{P}$ NMR spectra were obtained on a Varian XL-100 instrument (FT, 40.5 MHz). Negative chemical shifts are upfield from external 85% $\mathrm{H}_{3} \mathrm{PO}_{4} .{ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian instrument (CW, 220 MHz). IR spectra were recorded on a Perkin-Elmer 283 instrument.

Synthesis of $\left[\mathrm{fac}-\mathrm{Os}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}(6)$. In the glovebox, 200 mg (0.33 mmol) of $\mathrm{OsH}_{4} \mathrm{P}_{3}$ was weighed into a Schlenk flask. On a Schlenk line, 5 mL each of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. Similarly, $75 \mu \mathrm{~L}(0.12 \mathrm{~g}, 0.74 \mathrm{mmol})$ of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ was added, and the solution was stirred at room temperature. When gas evolution had ceased (ca. 20 min), 20 mL of diethyl ether was added slowly. The resulting colorless solid was filtered and washed with ether. $1 \mathrm{R}(\mathrm{KBr}): \nu(\mathrm{CN})$ 2292 (w), 2310 (w) $\mathrm{cm}^{-1},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): -36.89 (s) ppm. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.26(\mathrm{~m}, \mathrm{P}-\mathrm{Ph}), 2.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}\right), 2.05(\mathrm{~d}, 18$ $\mathrm{H}, \mathrm{P}-\mathrm{Me},{ }^{2} J_{\mathrm{PH}}=8 \mathrm{~Hz}$). When 6 was prepared with $\mathrm{CD}_{3} \mathrm{CN}$, the singlet at $\delta 2.32$ was absent.

Alternatively, 6 was prepared as the $\mathrm{PF}_{6}{ }^{-}$salt from $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$. In a Schlenk flask was prepared a solution of $300 \mathrm{mg}(0.8 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$. A second solution of $250 \mathrm{mg}(0.41 \mathrm{mmol})$ of $\mathrm{OsH}_{4} \mathrm{P}_{3}$ in 8 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ was added slowly via an addition funnel. Addition was stopped when the yellow color of $\mathrm{Ph}_{3} \mathrm{CPF}_{6}$ disappeared. The resulting solution was stripped in vacuo and the residue washed with 10 mL of toluene (to remove $\mathrm{Ph}_{3} \mathrm{CH}$ and unreacted $\mathrm{OsH}_{4} \mathrm{P}_{3}$). Crystals for X-ray diffraction were obtained by slowly cooling $\left(-20^{\circ} \mathrm{C}\right)$ a solution of $6\left(\mathrm{PF}_{6}{ }^{-}\right)$in $90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$. The compound prepared this way had spectral identical with that of the acidolysis product but also showed a PF_{6}^{-}resonance $\left(-144.5 \mathrm{ppm}\right.$, septet, $J_{\mathrm{P}-\mathrm{F}}=$ 708 Hz).

X-ray Crystallography. A suitable sample was cleaved from a larger crystal and transferred to the goniostat by using standard inert-atmosphere techniques. A systematic search of a limited hemisphere of reciprocal space revealed no systematic absences or symmetry, indicating a triclinic lattice. Parameters of the data collection ${ }^{33}$ are shown in Table I. No absorption correction was applied. The structure was solved by Patterson and Fourier techniques, followed by full-matrix refinement. A stoichiometric solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of crystallization was present. A difference Fourier phased on all non-hydrogen atoms clearly revealed hydrogen atoms with the exception of those on the MeCN ligands. Final cycles included hydrogens (except those of MeCN) as fixed-atom contributors in idealized ($\mathrm{C}-\mathrm{H}$ distance $=0.95 \AA$) positions. A final difference Fourier indicated hydrogen positions for one of the MeCN ligands and was otherwise featureless.

The results of the structural study are shown in Tables 11 and I11 and Figures 1 and 2. Further details (including peripheral ligand, $\mathrm{PF}_{6}{ }^{-}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ parameters) are available as Supplementary Material.

Synthesis of [mer, cis - $\left.\mathrm{OsH}\left(\mathrm{PMe}_{2} \mathbf{P h}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)$ (4). In the glovebox, $200 \mathrm{mg}(0.33 \mathrm{mmol})$ of $\mathrm{OsH}_{4} \mathrm{P}_{3}$ was added to a Schlenk flask. On the Schlenk line, 5 mL each of $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, followed by $35 \mu \mathrm{~L}(58 \mathrm{mg}, 0.36 \mathrm{mmol})$ of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$. The solution was stirred at room temperature for 45 min and then stripped to dryness in vacuo. The residue was washed with 10 mL of ether, yielding a colorless oily solid. Although the solid was greater than 90% pure (${ }^{31} \mathrm{P}$ NMR), it was difficult to isolate 4 without traces of 3 and 6 present. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-26.05(\mathrm{~d}),-31.40(\mathrm{t})\left(J_{\mathrm{PP}}=21 \mathrm{~Hz}\right) \mathrm{ppm},{ }^{31} \mathrm{P}$ NMR (selectively coupled to hydrides) $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-26.05\left(\mathrm{~d}\right.$ of d, $\left.J_{\mathrm{PH}}=16 \mathrm{~Hz}\right)$, -31.40 (virtual q, apparent $J_{\mathrm{P}-\mathrm{H}}=16 \mathrm{~Hz}$) ppm. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.2-7.6$ ($\mathrm{m}, \mathrm{P}-\mathrm{Ph}$), 2.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}$ trans to H), 1.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}$), $1.59\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{P}-\mathrm{Me}, J_{\mathrm{PH}}=11 \mathrm{~Hz}\right), 1.37\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{P}-\mathrm{Me}, J_{\mathrm{PH}}=9 \mathrm{~Hz}\right)$, -16.60 (virtual q, $1 \mathrm{H}, \mathrm{Os}-\mathrm{H}$, apparent $J=16 \mathrm{~Hz}$). Addition of $\mathrm{CD}_{3} \mathrm{CN}$ caused a decrease in the signal at 2.51 ppm , with evidence of free $\mathrm{CH}_{3} \mathrm{CN}$ at 1.97 ppm . The resonance at 1.95 ppm was unaffected.

Spectral Observation of $\left[\mathbf{O s H}_{5}\left(\mathbf{P M e}_{2} \mathbf{P h}\right)_{3}\right]\left(\mathrm{BF}_{4}\right)$ (2). $\mathrm{OsH}_{4} \mathrm{P}_{3}(100$ $\mathrm{mg}, 0.16 \mathrm{mmol}$) was added to an NMR tube and dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. To this solution was added $20 \mu \mathrm{~L}(30 \mathrm{mg}, 0.21 \mathrm{mmol})$ of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$. The resulting compound (formed quantitatively (${ }^{31} \mathrm{P}$)) was stable in solution for hours. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: -33.96 (s) ppm. Hydride coupling was not resolved but led to significant broadening of the observed singlet. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.47(\mathrm{~m}, \mathrm{P}-\mathrm{Ph}), 1.78$ (d, P-Me, $\left.J_{\mathrm{PH}}=8 \mathrm{~Hz}\right),-7.02\left(\mathrm{q}, \mathrm{Os}-\mathrm{H}, J_{\mathrm{PH}}=4 \mathrm{~Hz}\right)$. Addition of excess NEt_{3} to this solution resulted in regeneration of $\mathrm{OsH}_{4} \mathrm{P}_{3}\left({ }^{31} \mathrm{P}=-28.80\right)$ with no phosphorus-containing byproducts.

Spectral Observation of $\left[\mathrm{OsH}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left(\mathrm{BF}_{4}\right)$ (3). Os$\mathrm{H}_{4} \mathrm{P}_{3}(60 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added to an NMR tube and dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. To this solution was added $15 \mu \mathrm{~L}(25 \mathrm{mg}, 0.15 \mathrm{mmol})$ of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$. The tube was immersed in a $-78^{\circ} \mathrm{C}$ slush bath, and $10 \mu \mathrm{~L}$ of $\mathrm{CH}_{3} \mathrm{CN}$ was added. The sample was immediately inserted into the NMR probe cooled to $-35^{\circ} \mathrm{C}$ for a ${ }^{31} \mathrm{P}$ NMR spectrum. This showed overlapping singlets for $2(-33.96 \mathrm{ppm})$ and $3(-33.80 \mathrm{ppm})$. Subsequently ${ }^{1} \mathrm{H}$ NMR data were obtained at $25^{\circ} \mathrm{C}$. In addition to resonances
of 2 , free $\mathrm{CH}_{3} \mathrm{CN}(1.97 \mathrm{ppm})$, and $\mathrm{Et}_{2} \mathrm{O}(3.49(\mathrm{q}), 1.15(\mathrm{t}))$, the resonances for $\mathbf{3}$ were observed. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.51$ ($\mathrm{m}, \mathrm{P}-\mathrm{Ph}$), 2.31 $\left(\mathrm{s}, \mathrm{CH}_{3} \mathrm{CN}\right), 1.63\left(\mathrm{~d}, \mathrm{P}-\mathrm{Me}, J_{\mathrm{PH}}=8 \mathrm{~Hz}\right),-10.02\left(\mathrm{q}, \mathrm{Os}-\mathrm{H}, J_{\mathrm{PH}}=4\right.$ Hz).

Kinetic Studies. In the glovebox, $225 \mathrm{mg}(0.37 \mathrm{mmol})$ of $\mathrm{OsH}_{4} \mathrm{P}_{3}$ was weighed and dissolved in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.19 \mathrm{M})$. Under N_{2} purge, $80 \mu \mathrm{~L}$ of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(0.82 \mathrm{mmol})$ was added. The excess was employed to ensure production of only 3 and 6 (singlets in ${ }^{31} \mathrm{P}$); the $\mathrm{A}_{2} \mathrm{~B}$ pattern of 4 would be more difficult to integrate. The above solution was transferred to two NMR tubes (0.5 mL each). To the first was added $110 \mu \mathrm{~L}$ of a $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ solution (0.42 mmol of $\mathrm{CH}_{3} \mathrm{CN}, 0.69$ M), and the reaction was monitored via ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(20^{\circ} \mathrm{C}\right)$. To the second tube was added $110 \mu \mathrm{~L}$ of neat $\mathrm{CH}_{3} \mathrm{CN}\left(2.12 \mathrm{mmol}\right.$ of $\mathrm{CH}_{3} \mathrm{CN}$, 3.5 M), and the reaction was monitored similarly. Both reactions lasted $1-1.5 \mathrm{~h}$, and spectra were recorded (15 s acquisition time) every $5-10$ min. The rate of disappearance of 2 exhibited first-order behavior and the rate constant $k_{\text {obsd }}\left(\equiv k_{1}\right.$, eq 9) was determined as the slope of a plot
of $\ln \left[(\mathbf{2})_{0} /(\mathbf{2})_{t}\right]$ vs. time; data are given in Table IV.
Acknowledgment. This work was supported by Dow Chemical Corp. and by the Bloomington Academic Computing System. The deuterium NMR spectra were obtained on an instrument funded in part by NSF Grant No. CHE-80-05004.

Registry No. 1, 24228-57-7; $2\left(\mathrm{BF}_{4}\right)$, 88703-91-7; $3\left(\mathrm{BF}_{4}\right), 88703-93-9$; $4\left(\mathrm{BF}_{4}\right), 88703-95-1 ; 5,88764-07-2 ; 6\left(\mathrm{PF}_{6}\right)_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, 88703-96-2 ; 6$ $\left(\mathrm{PF}_{6}\right)_{2}, 88703-89-3 ; 6\left(\mathrm{BF}_{4}\right)_{2}, 88129-95-7 ; \mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}, 67969-82-8$; $\mathrm{Ph}_{3} \mathrm{CPF}_{6}, 437-17-2 ; \mathrm{CH}_{3} \mathrm{CN}, 75-05-8$.

Supplementary Material Available: Anisotropic temperature factors, distances and angles within the $\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PF}_{6}{ }^{-}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ moieties, and observed and calculated structure factors for [Os$\left.(\mathrm{NCMe})_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (36 pages). Ordering information is given on any current masthead page.

Structural Phase Transitions in Dihalo(N, N^{\prime}-disubstituted-diazabutadiene)nickel Complexes. Structures of Bis[dibromo(N, N^{\prime}-di-tert-butyldiazabutadiene)nickel] and Dibromo(N, N^{\prime}-di-tert-butyldiazabutadiene)nickel

Geoffrey B. Jameson,* ${ }^{\dagger}$ Hans Rudolf Oswald, ${ }^{\ddagger}$ and Hans Rudolf Beer ${ }^{\ddagger}$
Contribution from the Department of Chemistry, Georgetown University, Washington, DC 20057, and the Institute of Inorganic Chemistry, University of Zürich, 8057 Zürich, Switzerland. Received April 25, 1983

Abstract

Violet tetrahedral complexes $\mathrm{NiX}_{2}(\mathrm{dab})\left(\mathrm{X}=\mathrm{Br}, \mathrm{Cl} ; \mathrm{dab}=N, N^{\prime}\right.$-disubstituted-diazabutadienes) are formed when crystals of the yellow dimers $\left[\mathrm{NiX}_{2}(\mathrm{dab})\right]_{2}$ are heated. The structural transformation when $\mathrm{X}=\mathrm{Br}$ and dab $=N, N^{\prime}-\mathrm{di}-$ tert-butyldiazabutadiene is irreversible but topotactic-single crystallinity is largely preserved in the transformation. The yellow complex has been found by single-crystal X-ray structure analysis to be a distorted trigonal-bipyramidal centrosymmetric dimer: $\mathrm{Ni}-\mathrm{Br}($ terminal $)=2.457$ (1) $\AA, \mathrm{Ni}-\mathrm{Br}$ (bridging) $=2.497$ (1) and $2.583 \AA, \mathrm{Ni}-\mathrm{N}=2.042$ (4) and 2.039 (4) $\AA, \mathrm{Br}($ terminal) $-\mathrm{Ni}-\mathrm{Br}$ (bridging, long) $=165.79(3)^{\circ}$ (defines the pseudotrigonal axis), Br (bridging) $-\mathrm{Ni}-\mathrm{Br}$ (bridging) $=83.11(3)^{\circ}$, $\mathrm{N}-\mathrm{Ni}-\mathrm{N}=80.8(2)^{\circ}$. The monomer (structural analysis of a sample separately prepared at $\sim 130^{\circ} \mathrm{C}$) has tetrahedral $D_{2 h}$ symmetry: $\mathrm{Ni}-\mathrm{Br}=2.333$ (2) and 2.343 (2) $\AA, \mathrm{Ni}-\mathrm{N}=1.996$ (7) and 2.002 (8) $\AA, \mathrm{Br}-\mathrm{Ni}-\mathrm{Br}=126.78$ (6) ${ }^{\circ}, \mathrm{N}-\mathrm{Ni}-\mathrm{N}=$ 82.5 (3) ${ }^{\circ}$. The reaction mechanism involves cleavage of the long $\mathrm{Ni}-\mathrm{Br}$ bond and concerted movement of NiBr_{2} (dab) monomers with concomitant rearrangement to a tetrahedral $D_{2 d}$ system such that centrosymmetrically related Ni centers, formerly 3.806 \AA separated, become separated by $9.893 \AA$ and related by a 2_{1} screw axis. Movements of the monomeric $\mathrm{NiBr}_{2}($ dab $)$ units of about $10 \AA$ are observed, while crystallinity is largely preserved. Relevant crystal and refinement data are as follows. For $\left[\mathrm{NiBr}_{2}(\mathrm{dab})\right]_{2}$: space group $C_{2 h}^{6}-C 2 / c, a=20.429$ (5) $\AA, b=7.156$ (1) $\AA, c=20.504(5) \AA, \beta=98.50(2)^{\circ}, V=2965 \AA^{3}$ at $22^{\circ} \mathrm{C}, Z=4$ (dimers have $\frac{1}{1}$ symmetry), $\rho_{\text {calcd }}=1.73, \rho_{\text {obsd }}=1.72$ (1) $\mathrm{g} / \mathrm{cm}^{3}, 2560$ reflections with $I>3 \sigma_{I}$ in the range $0.0246<(\sin \theta) / \lambda<0.7049 \AA^{-1}$ (graphite-monochromated Mo K α radiation), R and R_{w} on $F 0.039$ and 0.047 . For NiBr_{2} (dab): space group $C_{2 h}^{s}-P 2_{1} / n, a=7.125$ (3) $\AA, b=19.717$ (10) $\AA, c=10.396$ (5) $\AA, \beta=90.91$ (2) ${ }^{\circ}, V=1459 \AA^{3}$ at $-150{ }^{\circ} \mathrm{C}$, $Z=4, \rho_{\text {calcd }}=1.67, \rho_{\text {obsd }}=1.66(1) \mathrm{g} / \mathrm{cm}^{3}$ (based upon room-temperature cell constants), 2300 reflections in the range 0.0246 $<(\sin \theta) / \lambda<0.5734 \AA^{-1}, R$ and R_{w} on F^{2} (ail data including $F^{2}<0$ was used) 0.091 and 0.127 , for the 1545 reflections with $I>3 \sigma_{I} R$ and R_{w} on $F 0.055$ and 0.062 .

The evaluation of kinetic parameters for solid-state reactions and structural phase transitions is conventionally based on analogy to the theory for processes occurring in homogeneous solution for lack of any better formulation. ${ }^{1}$ Thus, when free mobility of particles can no longer occur, when temperature exchange between the reacting species and solvent is not relevant, and when physical meaning for the reaction order is absent, interpretation of kinetic parameters is hazardous. Nonetheless by taking a series of compounds of known structure and comparing the parameters derived, it should be possible to make some meaningful com-

[^6]parisons and interpretations. In order to relate kinetic and thermodynamic data to a mechanism for the solid-state reaction or structural transformation, these processes should occur topotactically. ${ }^{2.3}$ For only with knowledge of the crystallographic

[^7]
[^0]: (34) Pearson, D. E.; Stamper, W. E.; Suthers, B. R. J. Org. Chem. 1963, 28, 3140.
 (35) Hooz, J.; Giliani, S. S. H. Can. J. Chem. 1968, 46, 86.
 (36) Gaylord, N. G. "Reduction with Complex Metal Hydrides"; Interscience: New York, 1956.

[^1]: (1) Aresta, M.; Sacco, A. Gazz. Chim. Ital. 1972, 102, 755-870.

[^2]: (2) (a) Brunner, H.; Wailes, P. C.; Kaesz, H. D. J. Inorg. Nucl. Chem. 1965, I, 125-129. (b) Deubzer, B.; Kaesz, H. D. J. Am. Chem. Soc. 1968, 90, 3276-3277.
 (3) Storr, A.; Thomas, B. S. Can. J. Chem. 1971, 49, 2504-2507.
 (4) (a) Shriver, D. F.; Johnson, M. P. J. Am. Chem. Soc. 1966, 88, 301-304. (b) Shriver, D. F. Acc. Chem. Res. 1970, 3, 231-238. (c) Richmond, T. G.: Basolo, F.; Shriver, D. F. Organometallics 1982, l, 1624-1628.

[^3]: (21) (a) Crabtree, R. H.; Hlatky, G. G. J. Organomet. Chem. 1982, 238, C21-C23. (b) Crabtree, R. H.; Hlatky, G. G.; Parnell, C. A.; Segmuller, B. F .; Uriarte, R. Inorg. Chem., in press.
 (22) Green, M. A.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1982, 104, 2319-2320.
 (23) Green, M. L. H.; McCleverty, J. A.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1961, 4854-4859.

[^4]: (24) Green, M. A.; Caulton, K. G., unpublished observations.
 (25) (a) Mazanec, T. J.; Letts, J. B.; Meek, D. W. J. Chem. Soc., Chem. Commun. 1982, 356-358. (b) Letts, J. B.; Mazanec, T. J.; Meek, D. W. J. Am. Chem. Soc. 1982, 104, 3898-3905. (c) Letts, J. B.; Mazanec, T. J.; Meek, D. W. Organometallics, 1983, 2, 695-704
 (26) Sanders, J. R. J. Chem. Soc., Dalton Trans. 1973, 743-747.

[^5]: (31) Green, M. L. H.; Mitchard, L. C.; Silverthorn, W. E. J. Chem. Soc., Dalton Trans. 1974, 1361-1363.
 (32) Crabtree, R. H.; Faller, J. W.; Mellea, M. F.; Quirk, J. M. Organometallics 1982, 1, 1361-1366.

[^6]: ${ }^{\dagger}$ Georgetown University.
 ${ }^{\ddagger}$ University of Zürich.

[^7]: (1) (a) Sestăk, J.; Satava, V.; Wendlandt, W. W. Thermochim. Acta 1973, 7, 333-352. (b) Behnisch, J.; Schaff, E.; Zimmermann, H. J. Therm. Anal. 1978, 13, 117-128. (c) Coats, A. W.; Redfern, J. P. Nature (London) 1964, 201, 68-69. (d) Satava, V. Thermochim. Acta 1971, 2, 423-428.
 (2) Following Günter and Oswald, ${ }^{3 a}$ we define a reaction as topotactic if the solid product is formed in one or only several definite crystallographic orientations relative to the parent crystal as a consequence of a chemical reaction or solid-state structural transformation and if it can proceed throughout the entire volume of the parent crystal. This definition differs in words only from several others.

